ООО «КАТРАБЕЛ»

EHE

Клапана регулирующие TL, TF

ТУ ВҮ 800010003.004-2018

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

КБ.РУ-50008-01.00-24

Минск 2024

Декларация о соответствии ЕАЭС № ВУ/112 11.01. ТР010 003.02 14568

ВВЕДЕНИЕ

Настоящее руководство по эксплуатации седельного регулирующего (регулирующего) клапана (далее – клапан) с электрическим исполнительным механизмом (приводом), предназначено для ознакомления обслуживающего персонала с устройством и работой клапана, его основными техническими данными и характеристиками, а также служит руководством по монтажу, техническому обслуживанию, хранению и транспортированию.

Предприятие-изготовитель постоянно ведет работу по усовершенствованию изделия, поэтому в настоящем руководстве могут быть не отражены внесенные незначительные конструктивные изменения.

К монтажу, использованию по назначению, техническому обслуживанию и ремонту клапанов допускаются лица, достигшие 18-летнего возраста, изучившие настоящее руководство и прошедшие подготовку в объеме требований соответствующих квалификационных характеристик.

1 НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Клапаны предназначены для применения в системах автоматического регулирования и управления технологическими процессами в качестве запорно-регулирующего органа трубопроводов жидких сред, пара, нейтральных по отношению к материалам деталей, соприкасающихся со средой. Наличие в рабочей среде механических примесей не регламентируется.

Клапаны выпускаются по ТУ РБ 800010003.004-2018 «Клапаны запорнорегулирующие седельные" типа TL..., TF...»

Клапаны не предназначены для установки и эксплуатации во взрывоопасных и пожароопасных зонах по ПУЭ.

Номинальное давления регулирующих клапанов PN16, PN25

По эксплуатационной законченности клапаны относятся к изделиям третьего порядка по ГОСТ 12997-84.

По устойчивости к воздействию атмосферного давления клапаны относятся к группе исполнения P1 по ГОСТ 12997-84.

По устойчивости к воздействию синусоидальных вибраций клапаны относятся к группе исполнения V1 по ГОСТ 12997-84.

По устойчивости к воздействию температуры и влажности окружающего воздуха клапаны относятся к группе исполнения В3 по ГОСТ 12997-84.

По требованию к герметичности затвора клапаны относятся к классу IV по ГОСТ 23866-87.

В соответствии с ГОСТ 12893-2005 по основным признакам клапаны подразделяются:

- по расположению патрубков к проходным, смесительным и разделительным;
- по типу присоединения к трубопроводу к фланцевым или муфтовым;
- по типу уплотнения подвижных элементов к сальниковым;
- по пропускной характеристике к линейным или равнопроцентным

Условное обозначение клапана при заказе.

XXXXXX-XXXX TYBY 800010003.004-2018

2VBC	двухходовой с температурой регулируемой среды до 130 °C
2VGC	двухходовой с температурой регулируемой среды до 150 °C
3VBC	трёхходовой с температурой регулируемой среды до 130 °C
3VGC	трёхходовой с температурой регулируемой среды до 150 °C
2SGC	двухходовой с температурой регулируемой среды до 180 °C (пар)
2AGS	двухходовой с температурой регулируемой среды до 250 °C (пар)

2 ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1 Основные параметры и характеристики клапанов регулирующих двухходовых муфтовых с внутренней резьбой приведены в таблицах 1-2.

Внешний вид и габаритные размеры в приложении А рис.А.1.

Таблица 1.

Тип		аметр	Пропускная способность	Ход штока	Рекомендуе- мый привод	Δp_{max}
		дюйм	К _{уs} м ³ /ч	MM	усилие привода не менее	не более МПа
TL15-2VBC-S.12-K _{VS} 0.63	15	1/2'	0.63	10	500N	0.9
TL15-2VBC-S.12-K _{VS} 1.00	15	1/2'	1.0	10	500N	0.9
TL15-2VBC-S.12-K _{VS} 1.60	15	1/2'	1.6	10	500N	0.9
TL15-2VBC-S.12-K _{VS} 2.50	15	1/2'	2.5	10	500N	0.9
TL15-2VBC-S.12	15	1/2'	4.0	10	500N	0.9
TL20-2VBC-S.12	20	3/4'	6.3	10	500N	0.9
TL25-2VBC-S.12	25	1'	10	15	500N	0.6
TL32-2VBC-S.12	32	1 1/4'	16	20	500N	0.4
TL40-2VBC-S.12	40	1 1/2'	25	20	500N	0.2
TL50-2VBC-S.12	50	2'	40	20	1000N	0.3

Примечание:

 K_{vs} — номинальный расход теплоносителя через полностью открытый клапан при перепаде давления $100~\mathrm{kTa}$

 Δp_{max} — допустимый максимальный перепад давления в канале управления клапана с электроприводом по всему диапазону срабатывания привода

Таблица 2.

Допустимая среда	Вода охлажденная, гликоль до 50%, горячая вода		
Температура рабочей среды	от минус 25 до плюс 130°C		
Номинальное давление	PN16		
Протечка	$<$ 0.01% ot ${ m K_{vs}}$		
Стандарт с внутренней резьбой	ISO 7-1		
Материал корпуса клапана	Нержавеющая сталь		
Материал седла клапана	Нержавеющая сталь		
Материал штока клапана	Нержавеющая сталь		
Уплотнительная конструкция	V- образный сальник + пружина из нержавейки с автомат. Ком- пенсацией		
V модель уплотнительного сальника	PTFE (Тефлон)		

2.2 Основные параметры и характеристики клапанов регулирующих трехходовых муфтовых внутренней резьбой приведены в таблицах 3-4.

Внешний вид и габаритные размеры в приложении рис.А.2.

Таблица 3.

Тип		аметр	Пропускная способность	Ход штока	Рекомендуе- мый привод	Δp_{max}
		дюйм	$\frac{\mathbf{K}}{\mathbf{M}^{3}} \stackrel{\mathbf{y}_{\mathbf{s}}}{\mathbf{q}}$	MM	усилие привода не менее	не более МПа
TL15-3VBC-S.12-KVS0.63	15	1/2'	0.63	10	500N	0.5
TL15-3VBC-S.12-KVS1.00	15	1/2'	1.0	10	500N	0.5
TL15-3VBC-S.12-KVS1.60	15	1/2'	1.6	10	500N	0.5
TL15-3VBC-S.12-KVS2.50	15	1/2'	2.5	10	500N	0.5
TL15-3VBC-S.12	15	1/2'	4.0	10	500N	0.5
TL20-3VBC-S.12	20	3/4'	6.3	10	500N	0.5

Продолжение таблицы 3.

TL25-3VBC-S.12	25	1'	10	15	500N	0.4
TL32-3VBC-S.12	32	1 1/4'	16	20	500N	0.35
TL40-3VBC-S.12	40	1 1/2'	25	20	500N	0.3
TL50-3VBC-S.12	50	2'	40	20	1000N	0.3

Примечание:

 K_{vs} — номинальный расход теплоносителя через полностью открытый клапан при перепаде давления $100~{\rm k}\Pi a$

 Δp_{max} — допустимый максимальный перепад давления в канале управления клапана с электроприводом по всему диапазону срабатывания привода

Таблица 4.

Допустимая среда	Вода охлажденная, гликоль до 50%, горячая вода		
Температура рабочей среды	от минус 25 до плюс 130°C		
Номинальное давление	PN16		
Протечка	<0.02% ot Kvs		
Стандарт с внутренней резьбой	ISO 7-1		
Материал корпуса клапана	Нержавеющая сталь		
Материал седла клапана	Нержавеющая сталь		
Материал штока клапана	Нержавеющая сталь		
Уплотнительная конструкция	V- образный сальник + пружина из нержавейки с автомат. ком- пенсацией		
V модель уплотнительного сальника	РТГЕ (Тефлон)		

2.3 Основные параметры и характеристики клапанов регулирующих двухходовых фланцевых приведены в таблицах 5-6.

Внешний вид и габаритные размеры в приложении рис.А.3.

Таблица 5.

	Диаметр	Пропускная способность	Ход штока	Рекомендуемый привод	Δp_{max}
Тип	MM	$K_{\mathbf{M}^{3}} \stackrel{Ys}{Y^{S}}$	MM	усилие привода не менее	не более МПа
TF15-2VGC(2SGC) -S.12	15	4	20	500N(1000N*)	1.10
TF20-2VGC(2SGC) -S.12	20	6.3	20	500N(1000N*)	1.10
TF25-2VGC(2SGC) -S.12	25	10	20	500N(1000N*)	0.70
TF32-2VGC(2SGC) -S.12	32	16	20	500N(1000N*)	0.40
TF40-2VGC(2SGC) -S.12	40	25	20	500N(1000N*)	0.25
TF50-2VGC(2SGC) -S.12	50	40	20	1000N(1000N*)	0.30
TF65-2VGC(2SGC) -S.14	65	63	20	1000N(3000N*)	1.00
TF80-2VGC(2SGC) -S.14	80	100	30	1000N(3000N*)	1.00
TF100-2VGC(2SGC) -S.14	100	160	40	1000N(3000N*)	1.60
TF125-2VGC(2SGC) -S.14	125	250	40	1000N(3000N*)	1.60
TF150-2VGC(2SGC) -S.14	150	350	40	3000N(3000N*)	1.60
TF200-2VGC(2SGC) -S.14	200	520	40	3000N(5000N*)	1.60
TF250-2VGC(2SGC) -S.14	250	700	40	3000N(5000N*)	1.60
TF300-2VGC(2SGC) -S.14	300	1200	60	5000N(16000N*)	1.60

Примечание:

 K_{vs} — номинальный расход теплоносителя через полностью открытый клапан при перепаде давления 100 kПа

∆р_{тах} – допустимый максимальный перепад давления в канале управления клапана с электроприводом по всему диапазону срабатывания привода

* - значения усилия привода для клапанов 2SGC

Таблица 6.

Допускаемая среда	Холодная вода, гликоль, гидразин, фосфат, горячая вода и т.д.
Температура рабочей среды	от минус 25 до плюс 150°C для клапанов 2VGC от 2 до 180°C для клапанов 2SGC (на пар) от 2 до 250°C для клапанов 2AGC (на пар)
Номинальное давление	PN16
Скорость утечки	<0.02% ot Kvs
Фланцевое соединение	ГОСТ 33259-2015
Материал корпуса	Ковкий чугун; Нержавеющая сталь (304,316)
Материал сердцевины	Нержавеющая сталь
Материал штока	Нержавеющая сталь
Конструкция седла	V образный сальник + авто-компенсационная пружина из нержавейки
Vобразный сальник	РТГЕ (Тефлон)

2.4 Основные параметры и характеристики клапанов регулирующих трехходовых фланцевых приведены в таблицах 7-8.

Внешний вид и габаритные размеры в приложении рис.А.4.

Таблица 7.

	Диаметр	Пропускная способность	Ход штока	Рекомендуемый привод	Δp_{max}
Тип	MM	$K_{\mathbf{M}^3} \overset{\mathbf{Y}_{\mathbf{S}}}{\mathbf{Y}_{\mathbf{I}}}$	MM	усилие привода не менее	не более МПа
TF15-3VGC -S.12	15	4	20	500N	1.10
TF20-3VGC -S.12	20	6.3	20	500N	1.10
TF25-3VGC -S.12	25	10	20	500N	0.70
TF32-3VGC -S.14	32	16	20	1000N	0.40
TF40-3VGC -S.14	40	25	20	1000N	0.25
TF50-3VGC -S.14	50	40	20	1000N	0.30
TF65-3VGC -S.14	65	63	20	3000N	1.00
TF80-3VGC -HS.14/FS14*	80	100	30	3000N	1.00
TF100-3VGC -HS.14/FS14*	100	160	40	3000N	1.60
TF125-3VGC -HS.14/FS14*	125	250	40	3000N	1.60
TF150-3VGC -HS.14/FS14*	150	350	40	3000N	1.60
TF200-3VGC -HS.14/FS14*	200	520	40	5000N	1.60
TF250-3VGC -HS.14/FS14*	250	700	40	5000N	1.60
TF300-3VGC -HS.15/FS15*	300	1200	100	16000N	1.60

Примечание:

 $\vec{K_{vs}}$ – номинальный расход теплоносителя через полностью открытый клапан при перепаде давления $100 \kappa \Pi a$

 Δp_{max} – допустимый максимальный перепад давления в канале управления клапана с электроприводом по всему диапазону срабатывания привода

* HS – смесительный клапан

FS – разделительный клапан

Таблица 8.

novinda ov					
Допускаемая среда	Холодная вода, гликоль, гидразин, фосфат, горячая вода и т.д.				
Температура рабочей среды	от минус 25 до плюс 150°C				
Номинальное давление	PN16				
Скорость утечки	<0.02% ot Kvs				
Фланцевое соединение	ГОСТ 33259-2015				
Материал корпуса	Ковкий чугун; Нержавеющая сталь (304,316)				

Продолжение таблицы 8.

Материал сердцевины	Нержавеющая сталь		
Материал штока	Нержавеющая сталь		
Конструкция седла	V образный сальник + авто-компенсационная пружина из нержавейки		
Vобразный сальник	РТГЕ (Тефлон)		

- 2.5. Присоединение к трубопроводу для муфтовых клапанов по ГОСТ 15763-2005
- 2.6. Присоединение к трубопроводу для фланцевых клапанов по ГОСТ 33259-2015.
- 2.7. Температура окружающей среды от минус 25 до плюс 50 $^{\circ}$ C, относительная влажность от 30 до 80%.
 - 2.8. Средний срок службы изделия 10 лет.
- 2.9. На корпусе клапана закреплена табличка, на которой нанесены основные сведения (тип и диаметр клапана, направление потока, номинальное давление и д.р.).

3 УТРОЙСТВО И ПРИНЦИП РАБОТЫ КЛАПАНА

- 3.1. По способу крепления клапаны изготавливаются муфтовые с внутренней резьбой и фланцевые.
- 3.2. По функциональному предназначению клапаны изготавливаются двух или трехходовые
- 3.3. По способу регулирования трехходовые клапаны разделяются на смесительные или разделительные. Все трехходовые муфтовые клапаны и фланцевые до диаметра DN65 могут использоваться как смесительные, так и разделительные.

Трёхходовые фланцевые клапаны диаметров DN80 и более разделяются на смесительные HS и разделительные FS. При заказе клапана надо обязательно учитывать эту характеристику клапана.

3.4. Принцип работы клапанов.

Работа клапана осуществляется электрическим исполнительным механизмом — приводом. Развиваемое приводом усилие предается через шток на клапан, который, перемещаясь вверх или вниз, изменяет площадь проходного сечения и регулирует расход рабочей среды.

3.4.1. Работа двухходовых клапанов.

Принцип работы двухходового клапана указана на рисунке 1. При движении штока клапана вниз – увеличивается расход теплоносителя, при движении штока клапан вверх уменьшается расход теплоносителя.

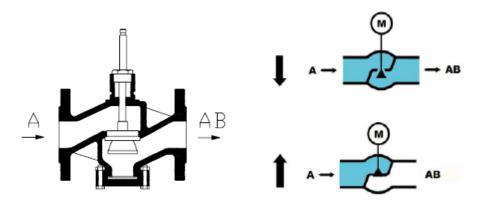
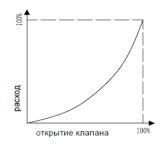


Рис.1.

3.4.2. Работа трехходовых клапанов.

Принцип работы трехходовых клапанов смесительных и разделительных указан в таблице 9. Для смесительных клапанов:


- при движении штока вниз- поток А увеличивается, поток В снижается;
- при движении штока вверх— поток A снижается, поток B увеличивается. Для разделительных клапанов DN15-DN65:
- при движении штока вниз поток А увеличивается, поток В снижается;
- при движении штока вверх— поток A снижается, поток B увеличивается. Для разделительных клапанов DN80-DN300:
- при движении штока вниз- поток А снижается, поток В увеличивается;
- при движении штока вверх- поток А увеличивается, поток В снижается.

Трехходовые фланцевые клапаны до DN65 включительно могут использоваться ка смесительные так и разделительные в обратном направлении.

Таблица 9.

от DN15 до DN50	TL***-3VGC-S.12 Смесительный	TL***-3VGC-S.12 Разделительный	
от DN15 до	TF***-3VGC-S.12	TF***-3VGC-S.12	
DN65	Смесительный	Разделительный	
от DN80 до	TF***-3VGC-HS.12		TF***-3VGC-FS.12
DN300:	Смесительный		Разделительный
	A AB	A AB	A AB
	A AB A B A B A B A B A B A B A B	A AB A AB A AB A AB A B A B A B	A AB AB AB AB AB AB AB AB
Шток двига- ется вниз	поток А возрастает; поток В	поток А возрастает; поток В снижается	поток А снижается; поток В возрастает
	снижается		
Шток двига- ется вверх	поток A снижается; поток В возрастает	поток А снижается; поток В возрастает	поток А возрастает; поток В снижается

3.5 Характеристика потока для смесительного и разделительного клапана представлены на графиках рисунка

А-АВ Равнопроцентная характеристика потока

B-AB Равнолинейная характеристика потока Открытие клапана

Рис.2.

3.6. Соотношение между перепадом давления и расходом рассчитывается по формуле

$$Kvs = \frac{V}{\sqrt{\frac{\triangle P}{100}}}$$

где

V- номинальный расход при ΔP (м3/ч)

ΔР - перепад давления при полностью открытом клапане(кПа)

 K_{vs} - номинальный расход теплоносителя через полностью открытый клапан при перепаде давления $100~\mbox{kHa}$

4 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 4.1. При выполнении работ по монтажу и эксплуатации клапанов необходимо пользоваться «Правилами по обеспечению промышленной безопасности оборудования, работающего под избыточным давлением» и ГОСТ 12.2.063-2015.
- 4.2. Обслуживающий персонал может быть допущен к обслуживанию клапана только после получения соответствующих инструкций по технике безопасности и изучения данного руководства.
 - 4.3. Для обеспечения безопасной работы категорически запрещается:
 - эксплуатировать клапан при отсутствии эксплуатационной документации;
- производить работы по монтажу и демонтажу клапанов, техническому обслуживанию при наличии давления рабочей среды в трубопроводе, при подключенном к электросети приводе:
- использовать клапан для рабочей среды, отличной от указанной в эксплуатационной документации.
- использовать клапаны на параметры, выходящие за пределы, указанные в эксплуатационной документации.
- использовать клапаны при направлении рабочей среды не соответствующей указанию стрелки на корпусе.
 - использовать клапаны в качестве опоры на трубопроводе.
 - класть на клапан отдельные детали и инструмент.
 - применять удлинители для затяжки крепежных деталей.
 - производить закрытие клапана при опрессовке трубопровода.
 - эксплуатировать клапан без заземления.

- при проведении испытаний ударять по клапанам, находящимся под давлением.
- проводить работы по демонтажу и ремонту клапанов (или привода), закручивать и ослаблять любой крепеж при наличии в них давления рабочей среды и разбирать клапаны, не обезвредив поверхности, соприкасавшиеся с агрессивной средой.
- производить замену уплотнений штока, подтяжку фланцевых соединений при наличии давления в системе и применять уплотняющие кольца большего или меньшего размера и сечения.
- 4.4. Эксплуатация клапана разрешается только при наличии инструкции по технике безопасности, утвержденной руководителем предприятия потребителя и учитывающей специфику применения клапана.

5 МОНТАЖ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 5.1. Монтаж изделия.
- 5.1.1. При такелажных работах и монтаже клапанов больших диаметров для закрепления клапанов необходимо использовать фланцы или наружную поверхность корпуса клапана. Запрещается использовать для этих целей электрический исполнительный механизм.
- 5.1.2. Рекомендуется перед клапаном устанавливать фильтр для защиты его деталей от повреждений, вследствие попадания на них посторонних твердых включений. При наличии в рабочей среде механических примесей с размерами частиц более 70 мкм установка фильтра перед клапаном является обязательной.
- 5.1.3. При монтаже клапанов ответные фланцы должны быть установлены строго параллельно фланцем клапана. Не допускается устранение перекосов за счет натяга, приводящего к деформации фланцев корпуса клапана.
- 5.1.4. Клапан рекомендуется устанавливать на трубопроводах, имеющих прямые участки до и после клапана не менее 5 условных проходов клапана.
 - 5.1.5. Перед монтажом клапана проверить:
 - состояние упаковки, комплектность поставки, наличие эксплуатационной документации;
- состояние внутренних полостей клапана и трубопровода, доступных для визуального осмотра. При обнаружении в клапане или трубопроводе посторонних предметов необходимо произвести промывку и продувку клапана;
 - состояние крепежных соединений.

Внимание! Клапан должен быть установлен строго таким образом, чтобы стрелка на корпусе совпадала с направлением движения рабочей среды.

- 5.1.6 Клапан установить в соответствии с рисунком 2.
- 5.1.6. Перед пуском системы, непосредственно после монтажа, клапан должен быть открыт и должна быть произведена тщательная промывка и продувка системы.

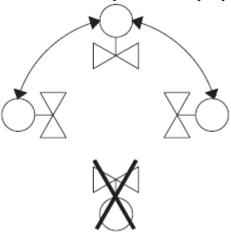


Рис.3

Внимание! Во избежание повреждения уплотнений запрещается вести сварочные работы на трубопроводе с установленным клапаном.

Внимание! При проведении испытаний под давлением затвор клапана должен быть полностью открыт. Эта операция может не только защитить внутренние части корпуса клапана, но также и предотвратит блокировку трубопровода.

- 5.1.7. Перед сдачей системы заказчику, следует проверить герметичность прокладочных соединений и уплотнения штока по методике предприятия, проводящего испытания, а также проверить работоспособность клапана.
 - 5.2 Техническое обслуживание.
- 5.2.1 Во время эксплуатации следует производить периодические осмотры (регламентные работы) в сроки, установленные графиком, в зависимости от режима работы системы, но не реже одного раза в 6 месяцев.
 - 5.2.2 При осмотре необходимо проверить:
 - общее состояние клапана;
 - состояние крепежных изделий.
- 5.2.3. Работы с электрическим исполнительным механизмом должны производиться в соответствии инструкцией по монтажу, настройке и эксплуатации электрического исполнительного механизма. Во время эксплуатации необходимо контролировать температуру в месте установки клапана. Недопустим перегрев электропривода выше предельной температуры эксплуатации, указанной в руководстве для электропривода.

6 УКАЗАНИЯ ПО ПРОВЕДЕНИЮ ИСПЫТАНИЙ

- 6.1. Испытания на герметичность прокладочных соединений и уплотнения штока клапанов следует производить подачей воды давлением во входной патрубок при открытом затворе и заглушенном выходном патрубке. Продолжительность выдержки при установившемся давлении: для клапанов с условным проходом до 50 мм включительно -1 мин; для остальных -2 мин.
- 6.2. Контроль герметичности осуществлять по методике предприятия, производящего испытания. Пропуск среды через места соединений не допускается.
- 6.3. Испытания на работоспособность следует производить путем пятикратного срабатывания клапана с помощью электрического исполнительного механизма на величину полного хода без подачи рабочей среды в клапан. Перемещение подвижных деталей должно происходить плавно, без рывков и заеданий.

7. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

Избегать механических повреждений и ударов. Хранить клапан в сухом отапливаемом помещении при температуре не ниже +5 °C.

Транспортировать клапан в закрытом транспорте. Во время транспортировки необходимо надежно закрепить, во избежание каких-либо ударов и передвижений внутри транспортного средства. При выполнении погрузочно-разгрузочных работ не допускается клапан бросать, кантоваться и т.п.

8. СВЕДЕНИЯ О УТИЛИЗАЦИИ

- 8.1. По истечении срока службы клапан подлежит списанию с последующей утилизацией.
- 8.2. Утилизации подлежат и материалы, высвободившиеся при проведении технического обслуживания, ремонта, а также материалы, использованные при проведении этих работ.
- 8.3. Хранение и утилизация отходов должны осуществляться в соответствии с нормативными документами на организацию данных работ для конкретных видов отходов.

9. ГАРАНТИЯ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие параметров клапан техническим характеристикам, при соблюдении владельцем условий транспортировании, хранения и эксплуатации прибора.

Гарантийный срок эксплуатации - 24 месяца с момента ввода в эксплуатацию, но не более 30 месяцев с даты продажи клапана.

По всем вопросам, относящимся к качеству, работе просим обращаться по адресу: **ООО** «КАТРАБЕЛ»,

ул. О.Кошевого, 136, г. Минск, инд.220070,Республика Беларусь факс (+10375-17) 377-11-67 Тел. (+10375 -17) 235-07-60, 235-07-61, 235-07-62

e-mail: info@katraby.by WWW.KATRABY.BY

ХАРАКТЕРНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТАНЕНИЯ

Наименование неисправности, внешнее проявление и дополни- тельные признаки	Вероятная причина	Метод устранения
Нет полного хода штока	1. Клапан разрегулирован 2. Попадание посторонних предметов в клапан	1. Произвести регулировку хода штока настройкой электрического исполнительного механизма. 2. Разобрать клапан, промыть, прочистить от грязи и посторонних включений.
Клапан не закрывается полностью	1.Клапан разрегулирован 2.Попадание посторонних предметов в клапан	1. Произвести регулировку хода штока настройкой электрического исполнительного механизма. 2. Разобрать клапан, промыть, прочистить от грязи и посторонних включений.

ПРИЛОЖЕНИЕ А

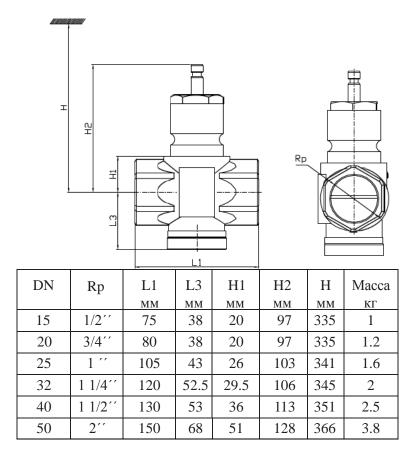


Рис.1. Внешний вид и габаритные размеры двухходового муфтового клапана

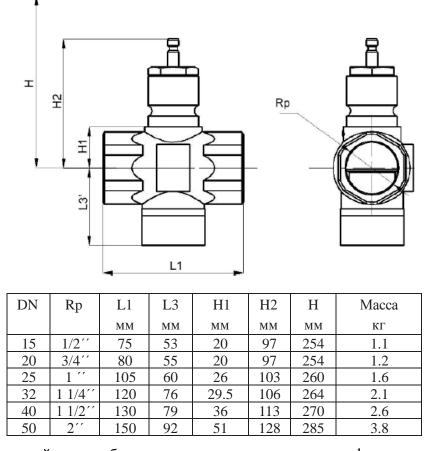
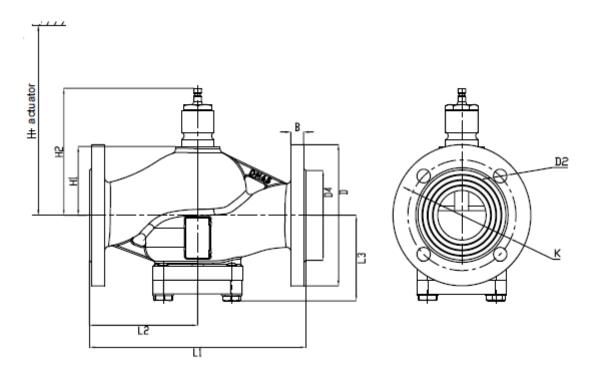
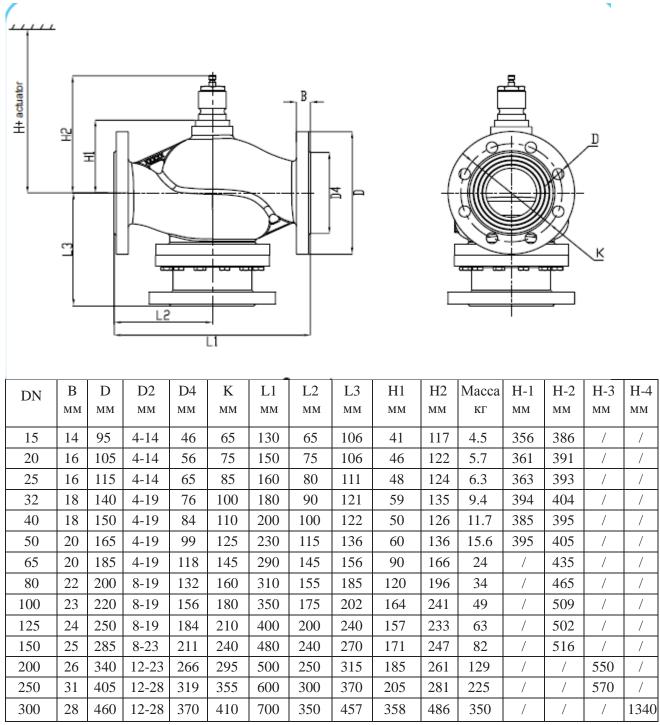



Рис.2. Внешний вид и габаритные размеры трехходового муфтового клапана



DN	В	D	D2	D4	K	L1	L2	L3	H1	H2	Mac-	H-1	H-2	H-3	H-4
	MM	MM	MM	MM	MM	MM	MM	MM	MM	MM	са кг	MM	MM	MM	MM
15	14	95	4-14	46	65	130	65	70	41	117	3.6	356	386	/	/
20	16	105	4-14	56	75	150	75	70	46	122	4.6	361	391	/	/
25	16	115	4-14	65	85	160	80	75	48	124	5.2	363	393	/	/
32	18	140	4-19	76	100	180	90	80	59	135	7.4	374	404	/	/
40	18	150	4-19	84	110	200	100	82	50	126	9.4	365	395	/	/
50	20	165	4-19	99	125	230	115	98	60	136	13	375	405	/	/
65	20	185	4-19	118	145	290	145	112	90	166	20	405	435	/	/
80	22	200	8-19	132	160	310	155	130	120	196	31	455	465	/	/
100	23	220	8-19	156	180	350	175	150	136	212	46	471	481	/	/
125	24	250	8-19	184	210	400	200	175	157	233	59	/	502	/	/
150	25	285	8-23	211	240	480	240	200	171	247	77	/	516	/	/
200	26	340	12-23	266	295	500	250	229	185	261	122	/	530	/	/
250	31	405	12-28	319	355	600	300	260	205	281	202	/	550	/	/
300	28	460	12-28	370	410	700	350	320	292	369	300	/	/	657	/

Примечание:

- H-1 размер с присоединением привода 500N
- H-2 размер с присоединением привода 1800N, 3000N, 5000N без ручного управления
- H-3 размер с присоединением привода 1800N, 3000N, 5000N с ручным управлением
- H-2 размер с присоединением привода 16000N

Рис.3. Внешний вид и габаритные размеры двухходового фланцевого клапана

Примечание:

- H-1 размер с присоединением привода 500N
- H-2 размер с присоединением привода 1800N, 3000N, 5000N без ручного управления
- Н-3 размер с присоединением привода 1800N, 3000N, 5000N с ручным управлением
- H-2 размер с присоединением привода 16000N

Рис.4. Внешний вид и габаритные размеры трехходового фланцевого клапана

ООО «Катрабел», ул. О.Кошевого 13б, г. Минск, РБ инд. 220070 тел. (+10375-17) 235-07-59, 235-07-60, факс 337-11-67 e-mail: info@katraby.by
WWW.KATRABY.BY